Dr Carlos S&aacute;nchez.<br />Neurocirujano en Tijuana.
  • ¡Bienvenida!
    • Acerca del Dr. Sánchez
    • Imágenes virtuales
    • Información adicional sobre las áreas de especialización
    • La clínica y colaboradores >
      • Clínicas colaboradoras
      • Médicos colaboradores
      • Neurocirujanos amigos
    • Estudiantes
  • Contacto
  • In English
  • Blog

SINAPSIS Y COMUNICACIÓN ENTRE NEURONAS

13/11/2023

0 Comentarios

 

La teoría conexionista era muy consistente con los descubrimientos del fisiólogo italiano Luigi Galván sobre el papel que la electricidad jugaría en nuestro cuerpo. Galvani estimuló eléctricamente los nervios de la pata de una rana que, como consecuencia, se contraía. Así que la energía eléctrica parecía ser el vehículo de las señales. Los resultados de su compatriota Camilo Golgi confinaban esta visión y dieron lugar a la teoría reticularista, basada en estudios microscópicos, que defendía que el sistema nervioso era una red que conectaba todas sus partes (sentidos, cerebro, músculos) permitiendo un comportamiento coherente. Conexionismo y reticularismo constituían una base explicativa consolidada ampliamente aceptada, pero con fisuras, porque algo había que no permitía avanzar y que mantenía la maquinaria subyacente como una caja negra. Y si ese algo era que el reticularismo no era cierto, como demostró Santiago Ramón y Cajal al descubrir que el sistema nervioso no era una red continua, sino que estaba formado por células, como el resto de los sistemas corporales. Por lo tanto, las neuronas eran contiguas unas con otras, no continuas. La continuidad de la red se rompía en cada neurona interponiéndose un espacio con la siguiente. Pero Cajal se anticipó también en otro aspecto: en 1894 propuso una teoría, absolutamente vigente hoy, para el almacenamiento de la memoria: la memoria se almacenaría en el crecimiento de nuevas conexiones neuronales.

Del lado de la biología se produjeron las aportaciones cruciales de Otto Loewi, Henry Hallett Dale y Charles Scott Sherrington, que demostraron que la región de la contigüidad entre neuronas demostrada por Cajal, “la sinapsis”, era un microórgano compartido y especializado en la función de comunicar unas con otras, siendo los mensajeros moléculas químicas, neurotransmisores que pasan desde una neurona hasta la siguiente.

Pero entonces, si la transmisión de señales entre neuronas es de naturaleza química, ¿le queda algún papel a la electricidad?

ELECTRICIDAD Y EXCITABILIDAD NEURONAL
​
La membrana celular separa el interior del exterior, dotando a las células de individualidad. Las células disponen de mecanismos para conservar en rangos adecuados las variables fisiológicas intracelulares. Algunas de estas variables tienen notables diferencias con las extracelulares, siendo de especial interés en el caso de las neuronas la asimetría intra-celular de los iones cargados eléctricamente. Esta asimetría genera una carga diferente a ambos lados de la membrana, determinando una electronegatividad del interior celular con respecto al exterior, en definitiva, una diferencia potencial (potencial de membrana) como la que se encuentra entre los bornes de una pila y con igual capacidad de generar un trabajo.

En las neuronas el trabajo es precisamente la excitabilidad, es decir, la capacidad de las neuronas para responder a un estímulo eléctrico con una respuesta de la misma naturaleza. Esta respuesta requiere intercambios puntuales entre los medios intra y extracelular de los iones (portadores de carga eléctrica) que pasan a través de poros o canales de la membrana, los cuales se abren y cierran en respuesta a los estímulos que permiten que los iones atraviesen la membrana, modificando el potencial de esta porque arrastran su carga eléctrica. En los axones se produce un cambio de potencial de acción, que se propaga a lo largo de los mismos. El axón es la herramienta de conducción de las neuronas, pudiendo extenderse a lo largo de metros hasta llegar a la terminal de la neurona, la sinapsis.

En la sinapsis se producen cambios eléctricos similares: un flujo de iones a través de canales que da lugar a un cambio en el potencial, siendo clave la entrada de ion calcio (Ca2+) que actúa como disparador de los procesos de liberación de los neurotransmisores. La neurona siguiente (postsináptica) dispone de receptores que activan la apertura y cierre de canales iónicos, que al igual que en el caso anterior, producirán cambios de potencial. Si esos cambios son excitadores y alcanzan un nivel mínimo (umbral de disparo), se producirá un potencial de acción de iguales características que el de la neurona anterior; es decir, se propagará a la siguiente. Por tanto, se produce una cadena de una neurona a la otra, en la que alternan procesos eléctricos y químicos para que cualquier señal se propague desde su neurona de origen a su neurona de destino, pasando en la mayoría de los casos por una serie de neuronas intermedias.

¿COMO SE APRECIA UNA NEURONA DESDE UN MICROSCOPIO? 

Observar neuronas es muy difícil, ya que son transparentes, así que para poder observarlas hay que teñirlas, de ahí las técnicas utilizadas por Golgi y Ramón y Cajal. Sin embargo al teñirlas éstas mueren, por lo que es necesario observarlas bajo una muestra de tejido nervioso. 

He aquí algunas imágenes de neuronas observadas desde microscopios:

A simple vista, el cerebro humano parece un órgano flácido, pálido y gelatinoso, tan frágil y delicado que hasta una corriente de agua con un poco de fuerza podría deshacerlo fácilmente. Sin embargo, bajo sus rugosos muros, se esconde un complejo bosque microscópico que da lugar a todas aquellas funciones que nos hacen humanos. Todo lo que somos, la forma en como pensamos, expresamos nuestras ideas, sentimos o percibimos el mundo, radica en algo tan minúsculo como la neurona, el árbol más poderoso de este bosque. Y más allá de su individualidad y de forma fundamental, en como esta se conecta e interactúa con otras para transmitir el impulso nervioso y computar las respuestas que rigen nuestra conducta.

Sebastian Seung, neurocientífico de la Universidad de Princeton denomina a la neurona, de forma divertida como "la célula poliamorosa" ya que desde su redondo soma o cuerpo -donde encierra el núcleo y la maquinaria metabólica necesaria para la vida- extiende un profuso conjunto de ramificaciones con las que abraza a otras miles de neuronas.

Estas ramificaciones pueden ser de dos tipos: las dendritas, más cortas y gruesas que coronan el cuerpo de la neurona y actúan como receptoras del impulso nervioso y el axón, largo y delgado que puede extenderse hasta otras regiones y actúa como transmisor del impulso.

¿CUAL ES LA FUNCIÓN DE LAS NEURONAS?

Tu capacidad de percibir tu entorno, de ver, oír y oler lo que te rodea, depende de tu sistema nervioso; también tu habilidad para reconocer dónde estás y recordar si has estado allí antes. De hecho, ¡tu mera capacidad de preguntarte dónde estás depende de tu sistema nervioso.

Si lo que percibes indica peligro ("¡oh no, la casa está en llamas!"), tu capacidad para actuar según esa información también depende de tu sistema nervioso. Además de permitirte procesar conscientemente la amenaza, tu sistema nervioso activa respuestas involuntarias, como un aumento en el ritmo cardíaco y de flujo sanguíneo a los músculos con la intención de ayudarte a enfrentar el peligro.

Todos estos procesos dependen de las células interconectadas que forman el sistema nervioso. Como el corazón, los pulmones y el estómago, el sistema nervioso se compone de células especializadas. Estas incluyen células nerviosas (o neuronas) y células gliales (o glía). Las neuronas son las unidades funcionales básicas del sistema nervioso y generan señales eléctricas llamadas potenciales de acción que les permiten transmitir información rápidamente a largas distancias. La glía también es esencial para la función del sistema nervioso, pero su principal función es apoyar a las neuronas.

Así cuando el impulso nervioso viaja de una neurona a otra, lo hace gracias a la conexión que se establece entre el axón de la neurona que transmite la señal y la dendrita de la neurona que la recibe. Esta, sin embargo no es una conexión directa. Entre los extremos de una y otra célula se abre un diminuto espacio vacío llamado "sinapsis". Como ocurre con los claves de luz, la electricidad no puede transmitirse si hay un corte en el circuito. Para salvar la endidura, el botón sináptico, situado en el extremo del axón, libera unas moléculas llamadas "neurotransmisores" que atraviesan el espacio sináptico hasta unirse a unos receptores situados en el extremo de la dendrita o espina dendrítica. Esta unión activa la neurona receptora para que continúe transmitiendo el impulso recibido.

Este proceso aparentemente sencillo, constituye la base de nuestra actividad cerebral ya que gracias a él, las neuronas se conectan formando redes capaces de procesar y computar las señales para generar respuestas. Probablemente, en estos mecanismos reside la razón de existencia del cerebro, cuyo papel es ensamblar las miles de redes neuronales que subyacen a los procesos característicos de la mente.

0 Comentarios



Deja una respuesta.

    Blog para Estudiantes

    Información orientada para su discusión entre médicos.
    ​
    ​Blog para pacientes: aquí.

    Regresar
Cuadro

© Neurological & Spine Surgery Tijuana
10122 Jose Clemente Orozco  Suite 104
Zona Rio, Tijuana Baja California CP 22000

TEL/PHONE:   
(01152664) + 634 7909
CEL/MOBILE: 

(011521664) + 367 6425

Enlaces de interés...

Hernias de disco

Aneurisma Cerebral

Neuralgia del trigémino


¿Qué es la neurocirugía?

Acerca de...


Contacto

Imagen

​Sitio creado por: Dr. Carlos Sánchez Olivera 2016-24