Los nervios periféricos están compuestos por haces de fibras nerviosas. En su curso, los nervios periféricos se dividen a veces en ramas que se unen a los nervios periféricos vecinos. Si se produce este hecho se forma una malla de nervios que se denomina plexo nervioso. Debe subrayarse que la formación de un plexo nervioso permite que las fibras nerviosas individuales pasen de un nervio periférico a otro y, en la mayoría de casos, las fibras nerviosas no se ramifican. De este modo, un plexo permite una redistribución de las fibras nerviosas en el interior de diferentes nervios periféricos.
Plexos nerviosos periféricos Los nervios periféricos están compuestos por haces de fibras nerviosas. En su curso, los nervios periféricos se dividen a veces en ramas que se unen a los nervios periféricos vecinos. Si se produce este hecho se forma una malla de nervios que se denomina plexo nervioso. Debe subrayarse que la formación de un plexo nervioso permite que las fibras nerviosas individuales pasen de un nervio periférico a otro y, en la mayoría de casos, las fibras nerviosas no se ramifican. De este modo, un plexo permite una redistribución de las fibras nerviosas en el interior de diferentes nervios periféricos.
En la raíz de las extremidades, las ramas anteriores de los nervios raquídeos forman plexos complicados. Los plexos cervical y braquial se hallan en la raíz de las extremidades superiores, y los plexos lumbar y sacro se encuentran en la raíz de las extremidades inferiores. Esto permite que las fibras nerviosas derivadas de diferentes segmentos de la médula espinal se organicen y distribuyan de modo eficiente en diferentes troncos nerviosos a las diversas partes de las extremidades superior e inferior.
Los nervios cutáneos, a medida que se aproximan a su destino final, forman habitualmente finos plexos que, de nuevo, permiten una redistribución de las fibras nerviosas antes de que alcancen sus terminaciones sensitivas terminales. El sistema nervioso neurovegetativo posee también numerosos plexos nerviosos que constan de fibras nerviosas preganglionares y posganglionares y de ganglios.
Plexo braquial.
En estado de reposo, una fibra nerviosa está polarizada de modo que su interior es negativo con respecto al exterior; la diferencia de potencial a través del axolema es aproximadamente de –80 mV y se denomina potencial de membrana en reposo. Como se explicó en la unidad que antecede, este denominado potencial de reposo se produce por la difusión de iones de sodio y potasio a través de los canales de la membrana plasmática, y se mantiene por la bomba de sodio-potasio. Tres iones de Na+ son bombeados al exterior por cada dos iones de K+al interior.
La bomba implica un transporte activo a través de la membrana y requiere trifosfato de adenosina (ATP) para proporcionar energía. Un impulso nervioso (potencial de acción) comienza en el segmento inicial del axón, y es una onda de negatividad eléctrica que se autopropaga rápidamente a lo largo de la superficie de la membrana plasmática (axolema). La onda de negatividad eléctrica se inicia por un estímulo adecuado que se aplica a la superficie de la neurona. En circunstancias normales, se produce en el segmento inicial del axón, que es la parte más sensible de la neurona.
El estímulo altera la permeabilidad de la membrana a los iones de Na+ en el punto de la estimulación. Entonces, los iones de Na+ entran rápidamente en el axón. Los iones positivos en el exterior del axolema disminuyen a cero con rapidez. Por tanto, el potencial de membrana se reduce a cero y se dice que está despolarizada. Un potencial de reposo característico es de –80 mV , con el exterior de la membrana positivo con respecto al interio; el potencial de acción es aproximadamente de +40 mV, con el exterior de la membrana negativa con respecto al interior. En los axones de pequeño díametro, es posible que el potencial de acción no se eleve hasta 40mV.
Intercambios iónicos y eléctricos que se producen en una fibra nerviosa durante la conducción de un impulso. | Creación del potencial de acción por la llegada de un estímulo procedente de una terminal presináptica única. Obsérvese que el potencial de acción generado en el segmento inicial sólo se producirá si se alcanza el umbral para la excitación en el segmento inicial. (De Snell, R. S. Clinical Neuroanatomy: A Review with Questions and Explanations [3.aed., pág. 7]. Baltimore: Lippincott Williams & Wilkins.) membrana positivo con respecto al interior; el potencial de acción es aproximadamente de +40 mV , con el exterior de la membrana negativa con respecto al interior. En los axones de pequeño diámetro, es posible que el potencial de acción no se eleve hasta 40 mV |
El punto con carga negativa en el exterior del axolema actúa entonces como estímulo para el axolema adyacente cargado positivamente, y en menos de 1 ms se invierte la polaridad del potencial de reposo adyacente. El potencial de acción se ha movido ahora a lo largo del axolema desde el punto estimulado originalmente hasta el punto adyacente en la membrana. De este modo, el potencial de acción se traslada a lo largo de la longitud total de una fibra nerviosa hasta su terminación. A medida que el potencial de acción se desplaza a lo largo de la fibra nerviosa, cesa la entrada de iones de Na+ en el interior del axón y aumenta la permeabilidad del axolema a los iones de K+. Entonces, los iones de K+salen rápidamente del axón, ya que la concentración es mucho mayor en el interior del axón que en el exterior, de modo que se restablece el potencial de membrana de reposo original. La permeabilidad del axolema disminuye entonces y el status quo se restablece por el transporte activo de iones de Na+ fuera del axón y de los iones de K+al interior del axón. La superficie externa del axolema es de nuevo eléctricamente positiva en comparación con la superficie interna.
Ésta es una descripción simplista de los movimientos de los iones de Na+ y K+. Para más detalles sobre los canales dependiente del voltaje de Na+ y K+, las bombas de Na+ y de K+, y los canales de escape de Na+ y K+, puede consultarse un libro de texto de fisiología. Durante un breve período después del paso de un impulso nervioso a lo largo de la fibra nerviosa, mientras el axolema sigue despolarizado, un segundo estímulo, por intenso que sea, es incapaz de excitar el nervio. Este período recibe la denominación de período refractario absoluto. La razón de base para el período refractario absoluto es que los canales de Na+ se inactivan, y no hay estímulo por fuerte que sea que pueda abrir las compuertas de Na+. Este período se sigue de otro corto intervalo durante el cual la excitabilidad del nervio retorna gradualmente a la normalidad. Este último período se denomina período refractario relativo.
Queda claro que el período refractario imposibilita un estado excitatorio continuo del nervio y limita la frecuencia de los impulsos. La velocidad de conducción de una fibra nerviosa es proporcional al área del corte transversal del axón, y las fibras más gruesas conducen la información más rápidamente que las de menor diámetro. En las grandes fibras motoras (fibras α), la velocidad puede ser de 70 a 120 m/s; las fibras sensitivas más pequeñas tienen unas velocidades de conducción más lenta. En las fibras amielínicas, el potencial de acción pasa de modo continuo a lo largo del axolema, excitando progresivamente las áreas vecinas de la membrana.
En las fibras mielínicas, la presencia de una vaina de mielina sirve como aislante, y pocos iones pueden fluir a través de la vaina. En consecuencia, una fibra nerviosa mielínica puede ser estimulada sólo en los nodos de Ranvier, donde el axón está desnudo y los iones pueden pasar libremente a través de la membrana plasmática entre el líquido extracelular y el axoplasma. En estas fibras, el potencial de acción salta de un nodo al siguiente. El potencial de acción en un nodo establece una corriente en el líquido tisular circundante, que rápidamente produce despolarización en el nodo siguiente. Este salto del potencial de acción de un nodo al siguiente recibe la denominación de conducción saltatoria. Este mecanismo es más rápido que el encontrado en las fibras amielínicas (120,0 m/s en una gran fibra mielínica, en comparación con 0,5 m/s en una fibra amielínica muy pequeña).
Cambios eléctricos que se producen en el axón mielínico estimulado (conducción saltatoria) (A) y axón amielínico estimulado (B).