Dr Carlos S&aacute;nchez.<br />Neurocirujano en Tijuana.
  • ¡Bienvenida!
    • Acerca del Dr. Sánchez
    • Imágenes virtuales
    • Información adicional sobre las áreas de especialización
    • La clínica y colaboradores >
      • Clínicas colaboradoras
      • Médicos colaboradores
      • Neurocirujanos amigos
    • Estudiantes
  • Contacto
  • In English
  • Blog

MAGNITUD DEL GENOMA NUCLEAR DE EUCARIOTAS

26/10/2023

0 Comentarios

 

El material genético contenido en el núcleo supone generalmente más del 90% del total de DNA celular. El primer aspecto a destacar es su magnitud con respecto al genoma mitocondrial y al de procariotas. Además, a diferencia de éstos, el genoma nuclear está repartido en varios cromosomas, en número diferente según la especie, generalmente muy grandes y con el DNA muy condensado al estar estrechamente asociado con histonas y otras proteínas. La magnitud del genoma nuclear viene determinada por la cantidad total de DNA en el conjunto de cromosomas de una célula. Ésta se puede expresar de varias formas:

• En número de cromosomas, designado por n en organismos haploides y 2n en diploides, en los que hay 2 copias de cada cromosoma.

• En masa de DNA (pg = picogramos).

• Como valor C, notación que expresa la cantidad de DNA total en el genoma de una célula con respecto a la presente en una célula haploide de la misma especie. Como se verá, en células diploides el valor puede ser de 2C o 4C, dependiendo del estadio del ciclo celular.

• Lo más habitual es expresarlo en longitud: pb = pares de bases en bicatenario, o nt = nucleótidos en monocatenario. Para moléculas largas se emplean kilobases (kb o kpb = 103 pb) o megabases (Mb o Mpb = 106 pb).

Foto

Procede, por otra parte, analizar la magnitud del genoma de forma comparativa tanto entre individuos de una misma especie como entre especies diferentes:

a) Todas las células de los individuos de una misma especie poseen la misma cantidad total de DNA y número de cromosomas. De esta generalización deben exceptuarse las células germinales, dedicadas a la reproducción del individuo, que poseen la mitad. En todos los casos, estas cifras se refieren a células en un mismo estado de división celular (normalmente la interfase) pues, la cantidad total de DNA, aunque no el número de cromosomas, varía en una célula a lo largo del ciclo celular.

b) El contenido total de DNA, expresado en pg o en n.0 de pb, y el número de cromosomas varían ampliamente entre especies diferentes. A menudo se ha asumido que el tamaño del genoma pueda estar relacionado con el grado de complejidad del organismo, o su posición en la escala evolutiva, pero hoy en día está claro que esto no es así. Solamente al comparar virus, procariotas y eucariotas se aprecia una diferencia significativa en la magnitud del genoma. Dentro de los eucariotas, el tamaño del genoma varía ampliamente pero de forma independiente de la posición en la escala evolutiva o de lo que pudiera, bajo un punto de vista antropocéntrico, entenderse como complejidad de la especie. Así, por ejemplo, la célula humana contiene 700 veces más DNA que la de E. coli, pero 300 veces menos que las células de algunas salamandras y plantas angiospermas, e incluso menos que algunos protozoos (eucariotas unicelulares).

Foto

​Por otro lado, no existe correlación alguna entre el tamaño del genoma de una especie y el número de cromosomas que lo componen. Por ejemplo, mientras que el genoma humano diploide (6,4 109 pb) está repartido en 46 cromosomas (23 pares, n = 23), las células de ratón, con un genoma menor (3 109 pb), poseen menor número de cromosomas (40), mientras que en las células de cebolla un genoma 2 veces mayor que el humano (1,5 1010 pb) está contenido en sólo 16 cromosomas. De forma similar, la mosca de la fruta, con un genoma (1,7 108 pb) mucho mayor que el de la levadura (1,6 107 pb), posee un número muy inferior de cromosomas (8 frente a 32).

Foto

Esta ausencia de correlación entre cantidad de material genético y complejidad del organismo es una de las pautas para sugerir que el tamaño de los genomas de organismos superiores es muy superior al necesario y, por tanto, que una gran parte es no codificante, es decir, no está organizado en genes, nunca traduce su información a un producto génico (RNA o proteína). De todos modos, se debe ser cauto al considerar una categorización de los organismos de acuerdo a su complejidad, pues es muy discutible que un ser humano sea más complejo que, digamos, un gusano. En cualquier caso, la hipótesis de una importante fracción no codificante en el genoma se ha confirmado. Por ejemplo, se ha encontrado que los genes tienen una longitud media de alrededor de 1.000 pb. Asumiendo esta cifra, el genoma humano haploide podría contener unos 3,2 millones de genes y, sin embargo, se estima hoy en día que sólo contiene unos 25.000, de modo que la fracción codificante sólo alcanza alrededor del 1% del DNA total.

Aunque la función de los genes está bien establecida para una pequeña fracción del total presente en el genoma humano, la diversidad en la cantidad total de DNA en los genomas puso de manifiesto la necesidad de estudiar con mayor precisión la organización estructural de genes y genomas a nivel molecular. Las características más relevantes del genoma nuclear son la presencia de grandes regiones que no codifican producto génico alguno (DNA no codificante) y la existencia de secuencias de DNA que se repiten un número más o menos elevado de veces (DNA repetitivo). Como se estudiará con detenimiento posteriormente, hay que unir a ello la existencia de una enorme diversidad en la secuencia en distintas regiones del DNA, tanto sencillas como repetitivas, codificantes o no.

Foto

Magnitud y características del genoma mitocondrial El genoma de orgánulos (mitocondrias en animales, mitocondrias y cloroplastos en plantas) es, posiblemente, un vestigio del cromosoma de bacterias arcaicas que accedieron al citoplasma de eucariotas primitivos, para dar lugar tras la evolución a dichos orgánulos (hipótesis endosimbionte). Se cree que la mitocondria (orgánulo que aporta casi toda la energía que necesitan las células) surgió al acumularse el oxígeno en la atmósfera terrestre. Posiblemente, la mitocondria y el núcleo de la célula eucariótica se formaron en paralelo, al incorporarse por endocitosis células procariotas aeróbicas al interior de la célula eucariótica anaeróbica y fusionarse ambas. Con el tiempo, la mayoría de los genes procarióticos (genes protomitocondriales) se integraron en el genoma nuclear, con lo que el eucariota primitivo anaeróbico ya podía vivir en una atmósfera rica en oxígeno; sólo una pequeña fracción del genoma procariótico primigenio permaneció en la mitocondria.

Las células animales poseen un número muy variable de mitocondrias, dependiendo de la especie y del tejido. Cada mitocondria posee varias copias de un único cromosoma (habitualmente menos de una decena), situadas en la matriz mitocondrial y ancladas a la membrana interna. En consecuencia, el número de copias de DNA mitocondrial (mtDNA) en una célula oscila entre 200 y 2.000 (algunas referencias hablan de hasta 100.000 en casos puntuales). El cromosoma mitocondrial es bicatenario y circular, como el de procariotas, aunque de tamaño muy inferior: 16.569 pb en humanos, con una longitud de 5 mm y una masa molecular de 10 MDa; esto supone una longitud 3.000 veces inferior a la del cromosoma nuclear más pequeño. Teniendo en cuenta el número de copias totales (2 del genoma nuclear frente a múltiples, y muy variables, del mitocondrial), se puede calcular que el DNA mitocondrial total supone, dependiendo del tejido, entre un 0,05 y un 0,5% del DNA total de la célula (quizás hasta el 20% en los casos extremos mencionados). Finalmente, la situación es similar para el cromosoma de cloroplastos, que es igualmente bicatenario y circular, pero de mayor tamaño que el mitocondrial.

A diferencia del DNA nuclear, con abundantes repeticiones y regiones no codificantes, el mt DNA es en su casi totalidad no repetitivo y codificante. En concreto, el cromosoma mitocondrial humano contiene un total de 37 genes que suponen el 93% del DNA. Entre ellos se cuentan 2 genes para RNA ribosómico, 22 para RNA transferente y 13 para proteínas; éstas forman parte de los complejos enzimáticos respiratorios I, III, IV y V, pero suponen sólo el 5% de las proteínas mitocondriales, estando el resto codificadas por DNA nuclear.

0 Comentarios



Deja una respuesta.

    Blog para Estudiantes

    Información orientada para su discusión entre médicos.
    ​
    ​Blog para pacientes: aquí.

    Regresar
Cuadro

© Neurological & Spine Surgery Tijuana
10122 Jose Clemente Orozco  Suite 104
Zona Rio, Tijuana Baja California CP 22000

TEL/PHONE:   
(01152664) + 634 7909
CEL/MOBILE: 

(011521664) + 367 6425

Enlaces de interés...

Hernias de disco

Aneurisma Cerebral

Neuralgia del trigémino


¿Qué es la neurocirugía?

Acerca de...


Contacto

Imagen

​Sitio creado por: Dr. Carlos Sánchez Olivera 2016-24